Evaluating the Integral: ∫₁⁴ 3√t ln(t) dt
In this article, we will learn how to evaluate the definite integral of the function 3√t ln(t)
over the interval [1, 4].
The integral we need to evaluate is:
∫₁⁴ 3√t ln(t) dt
To evaluate this integral, we will use the fundamental theorem of calculus and the properties of integrals.
Step 1: Understand the function
The function we are integrating is 3√t ln(t)
, which is the product of two functions:
3√t
: the square root oft
, raised to the power of 3ln(t)
: the natural logarithm oft
Step 2: Apply the power rule and logarithm rule
To evaluate the integral, we can use the power rule and the logarithm rule of integration:
∫ x^n ln(x) dx = (x^(n+1) / (n+1)) ln(x) - ∫ x^(n+1) / (n+1) dx
In our case, n = 3/2
, so we can apply the formula:
∫ 3√t ln(t) dt = (t^(3/2+1) / (3/2+1)) ln(t) - ∫ t^(3/2+1) / (3/2+1) dt
Simplifying the expression, we get:
∫ 3√t ln(t) dt = (2t^(5/2) / 5) ln(t) - ∫ 2t^(5/2) / 5 dt
Step 3: Evaluate the integral
Now, we can evaluate the integral from 1 to 4:
∫₁⁴ 3√t ln(t) dt = [(2t^(5/2) / 5) ln(t)]₁⁴ - ∫₁⁴ 2t^(5/2) / 5 dt
Evaluating the first term:
(2t^(5/2) / 5) ln(t)
= (2 * 4^(5/2) / 5) ln(4) - (2 * 1^(5/2) / 5) ln(1)
= (2 * 32 / 5) ln(4) - 0
= 12.8 ln(4)
Evaluating the second term:
∫₁⁴ 2t^(5/2) / 5 dt
= (2 / 5) ∫₁⁴ t^(5/2) dt
= (2 / 5) [(2t^(7/2) / 7)]₁⁴
= (2 / 5) [(2 * 4^(7/2) / 7) - (2 * 1^(7/2) / 7)]
= (2 / 5) [(128 / 7) - (2 / 7)]
= 36.57
Combining the two terms, we get the final result:
∫₁⁴ 3√t ln(t) dt = 12.8 ln(4) - 36.57 = -23.77
Therefore, the value of the definite integral ∫₁⁴ 3√t ln(t) dt is -23.77.